Basic Information | Overview of PTM Sites | Experimental PTM Sites | Protein-Protein Interactions | Drug and Disease Associations | Related Literatures
Basic Information
Protein Name :  Mitogen-activated protein kinase 14  

UniProtKB / Swiss-Prot ID :  MK14_HUMAN

Gene Name (Synonyms) : 
MAPK14, CSBP, CSBP1, CSBP2, CSPB1, MXI2, SAPK2A  

Species :  Homo sapiens (Human). 

Subcellular Localization :  Cytoplasm. Nucleus. 

Protein Function :  Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additionnal targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF- induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14- mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF- kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. 

Protein Sequence MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQSIIHAKRTYR...
Predicted Secondary Structure CCCCCCCEEEEECCCEECCCCCCEEEEEEEEECCCEEEEEEEECCCCCEEEEEEECCCCCCHHHHHHHHH...
Protein Variant
LocationDescription
51A -> V (in a gastric adenocarcinomasample; somatic mutation).
322P -> R (in a lung adenocarcinoma sample;somatic mutation).
343D -> G (in dbSNP:rs45496794). VAR_042272
- top -

Overview of Protein Modification Sites with Functional and Structural Information
Accessible Surface Area (ASA)
Pred. Secondary
Real Secondary
Disorder Prediction
Protein Domain
&
Experimental PTM Sites
Predicted PTM Sites
Protein Variant
- top -

Experimental Post-Translational Modification Sites Download
Locations
Modification
Substrate Sites
&
Secondary Structure
Accessible Surface Area (%)
Resource
Reference
Structural Characterization
Orthologous
Protein Cluster
2Phosphoserine---MSQERP
---CCCCCC
40.52HPRD
Link-
2Phosphoserine---MSQERP
---CCCCCC
40.52Phosphositeplus
Link-
2Phosphoserine---MSQERP
---CCCCCC
40.52SysPTM
Link-
2Phosphoserine.---MSQERP
---CCCCCC
40.52UniProtKB
Link-
9PhosphotyrosineRPTFYRQEL
CCCEEEEEC
17.54HPRD
Link
15Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)QELNKTIWE
EECCCEECC
54.75Phosphositeplus
Link
16PhosphothreonineELNKTIWEV
ECCCEECCC
30.19HPRD
Link
16PhosphothreonineELNKTIWEV
ECCCEECCC
30.19Phosphositeplus
Link
16PhosphothreonineELNKTIWEV
ECCCEECCC
30.19SysPTM
Link
16Phosphothreonine.ELNKTIWEV
ECCCEECCC
30.19UniProtKB
Link
53N6-acetyllysineRVAVKKLSR
EEEEEEECC
37.95Phosphositeplus
Link
53N6-acetyllysine.RVAVKKLSR
EEEEEEECC
37.95UniProtKB
Link
123PhosphothreonineCQKLTDDHV
CCCCCHHHH
46.55Phosphositeplus
Link
139Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)LRGLKYIHS
HHHHHHHHH
45.01Phosphositeplus
Link
152N6-acetyllysineHRDLKPSNL
EEECCCCCE
51.17Phosphositeplus
Link
152N6-acetyllysine.HRDLKPSNL
EEECCCCCE
51.17UniProtKB
Link
175PhosphothreonineLARHTDDEM
EHHHCCCCC
39.32HPRD
Link
175PhosphothreonineLARHTDDEM
EHHHCCCCC
39.32Phosphositeplus
Link
180PhosphothreonineDDEMTGYVA
CCCCEEEEE
24.26HPRD
Link
180PhosphothreonineDDEMTGYVA
CCCCEEEEE
24.26Phosphositeplus
Link
180PhosphothreonineDDEMTGYVA
CCCCEEEEE
24.26SysPTM
Link
180Phosphothreonine (MAP2K3)DDEMTGYVA
CCCCEEEEE
24.26HPRD
Link
180Phosphothreonine (MAP2K6)DDEMTGYVA
CCCCEEEEE
24.26HPRD
Link
180Phosphothreonine (MAP2K_group;MAP2K6)DDEMTGYVA
CCCCEEEEE
24.26PhosphoELM
Link
180Phosphothreonine; by MAP2K3, MAP2K4,MAP2K6 and autocatalysis.DDEMTGYVA
CCCCEEEEE
24.26UniProtKB
Link
182PhosphotyrosineEMTGYVATR
CCEEEEEEC
4.26HPRD
Link
182PhosphotyrosineEMTGYVATR
CCEEEEEEC
4.26Phosphositeplus
Link
182PhosphotyrosineEMTGYVATR
CCEEEEEEC
4.26SysPTM
Link
182Phosphotyrosine (MAP2K6)EMTGYVATR
CCEEEEEEC
4.26HPRD
Link
182Phosphotyrosine (MAP2K_group)EMTGYVATR
CCEEEEEEC
4.26PhosphoELM
Link
182Phosphotyrosine (RET)EMTGYVATR
CCEEEEEEC
4.26HPRD
Link
182Phosphotyrosine; by MAP2K3, MAP2K4,MAP2K6 and autocatalysis.EMTGYVATR
CCEEEEEEC
4.26UniProtKB
Link
185PhosphothreonineGYVATRWYR
EEEEECCCC
16.22Phosphositeplus
Link
241PhosphothreonineRLVGTPGAE
HHHCCCCHH
15.86HPRD
Link
241PhosphothreonineRLVGTPGAE
HHHCCCCHH
15.86SysPTM
Link
263PhosphothreonineIQSLTQMPK
HHHCCCCCC
28.24HPRD
Link
263PhosphothreonineIQSLTQMPK
HHHCCCCCC
28.24HPRD
Link
263PhosphothreonineIQSLTQMPK
HHHCCCCCC
28.24PhosphoELM
Link
263PhosphothreonineIQSLTQMPK
HHHCCCCCC
28.24Phosphositeplus
Link
263Phosphothreonine.IQSLTQMPK
HHHCCCCCC
28.24UniProtKB
Link
298PhosphothreonineDKRITAAQA
CCCCCHHHH
21.70HPRD
Link
323PhosphotyrosineVADPYDQSF
CCCCCCCCC
27.45Phosphositeplus
Link
323Phosphotyrosine (ZAP70)VADPYDQSF
CCCCCCCCC
27.45PhosphoELM
Link
323Phosphotyrosine; by ZAP70.VADPYDQSF
CCCCCCCCC
27.45UniProtKB
Link
- top -

Protein-Protein Interactions
      Interacting Protein      
Interaction type
Source ID
      Resource      
      Pubmed ID      
Domain-Domain Interactions
BCL2_HUMANphosphorylation reactionMINT-17662MINT11495898
BCL2_HUMANphosphorylation reactionMINT-17663MINT11495898
MAPK2_HUMANphysical interactionMINT-13898MINT9768359
MAPK2_HUMANphysical interactionMINT-13899MINT9768359
MP2K6_HUMANphysical interactionMINT-4300277MINT17255949
LIMK1_HUMANphosphorylation reactionMINT-2833254MINT16456544
TAB1_HUMANphysical interactionMINT-17883MINT11847341
TAB1_HUMANphysical interactionMINT-17884MINT11847341
Q86YK6_HUMANphysical interactionMINT-64844MINT16169070
NCOA3_HUMANphosphorylation reactionMINT-2834463MINT16456540
KS6A4_HUMANphysical interaction
physical interaction
EBI-73975
EBI-73988
intact9792677
9792677
GSTP1_HUMANphysical interactionEBI-996222
intact16636664
PML_HUMANin vitro
in vivo
HPRD:02619HPRD15273249
GRB2_HUMANin vitroHPRD:02619HPRD8695800
CSK2B_HUMANin vivoHPRD:02619HPRD10747897
CSK22_HUMANin vivoHPRD:02619HPRD10747897
CREB1_HUMANin vivoHPRD:02619HPRD11377386
ATF2_HUMANin vitro
in vivo
HPRD:02619HPRD7535770
12110590
11259586
10085140
DDIT3_HUMANin vitroHPRD:02619HPRD8650547
ESR1_HUMANin vitro
in vivo
HPRD:02619HPRD12138194
K2C8_HUMANin vitro
in vivo
HPRD:02619HPRD11788583
11781324
9211903
K1C18_HUMANin vivoHPRD:02619HPRD11788583
JUNB_HUMANin vitroHPRD:02619HPRD9889198
8917518
PTN7_HUMANin vitroHPRD:02619HPRD10559944
10206983
10415025
MK01_HUMANin vitroHPRD:02619HPRD12697810
17255949
MPIP3_HUMANin vitroHPRD:02619HPRD11333986
10557092
9278512
11551930
FLNA_HUMANin vivoHPRD:02619HPRD11390380
ELK1_HUMANin vitroHPRD:02619HPRD8622669
9130707
8548291
HNF4A_HUMANin vitroHPRD:02619HPRD16351573
ELK3_HUMANin vitroHPRD:02619HPRD11042694
STAT4_HUMANin vitro
in vivo
HPRD:02619HPRD10961885
MEF2A_HUMANin vitro
in vivo
HPRD:02619HPRD10330143
9858528
10849446
MEF2C_HUMANin vitro
in vivo
HPRD:02619HPRD10330143
9753748
10805738
9069290
SMAD3_HUMANin vitro
in vivo
HPRD:02619HPRD14512875
KS6A4_HUMANin vitro
in vivo
yeast 2-hybrid
HPRD:02619HPRD9792677
10806207
PRGC1_HUMANin vitro
in vivo
HPRD:02619HPRD11741533
EF2K_HUMANin vitroHPRD:02619HPRD12171600
NFAC4_HUMANin vitro
in vivo
HPRD:02619HPRD11997522
MAPK5_HUMANin vitroHPRD:02619HPRD9628874
EEA1_HUMANin vitro
in vivo
HPRD:02619HPRD16138080
RBNS5_HUMANin vitro
in vivo
HPRD:02619HPRD16138080
NCOA3_HUMANin vivoHPRD:02619HPRD16135815
15383283
MAPK2_HUMANin vitro
in vivo
HPRD:02619HPRD8846784
7592979
TISB_HUMANyeast 2-hybridHPRD:02619HPRD16189514
MAX_HUMANin vitroHPRD:02619HPRD7479834
SYMC_HUMANin vitroHPRD:02619HPRD9878398
NFAC1_HUMANin vitro
in vivo
HPRD:02619HPRD15304486
M3K7_HUMANin vivoHPRD:02619HPRD12589052
HSF4_HUMANin vitroHPRD:02619HPRD16581800
SCN8A_HUMANin vivoHPRD:02619HPRD16014723
SL9A1_HUMANin vitro
in vivo
HPRD:02619HPRD11604491
4EBP1_HUMANin vitroHPRD:02619HPRD11777913
FKBP8_HUMANyeast 2-hybridHPRD:02619HPRD16169070
PA24A_HUMANin vivoHPRD:02619HPRD9468497
MAPK5_HUMANENSP00000229794STRING
HMOX1_HUMANENSP00000229794STRING
TAB1_HUMANENSP00000229794STRING
DUS16_HUMANENSP00000229794STRING
CREB1_HUMANENSP00000229794STRING
DUS1_HUMANENSP00000229794STRING
DUS4_HUMANENSP00000229794STRING
ELK1_HUMANENSP00000229794STRING
HTRA2_HUMANENSP00000229794STRING
KS6A5_HUMANENSP00000229794STRING
ATF1_HUMANENSP00000229794STRING
MP2K4_HUMANENSP00000229794STRING
IL1B_HUMANENSP00000229794STRING
ATF2_HUMANENSP00000229794STRING
ZAP70_HUMANENSP00000229794STRING
ZAP70_HUMANENSP00000229794STRING
ZAP70_HUMANENSP00000229794STRING
ZAP70_HUMANENSP00000229794STRING
RB_HUMANENSP00000229794STRING
MP2K1_HUMANENSP00000229794STRING
FOS_HUMANENSP00000229794STRING
IL8_HUMANENSP00000229794STRING
CASP3_HUMANENSP00000229794STRING
PA21B_HUMANENSP00000229794STRING
TRAF6_HUMANENSP00000229794STRING
SP1_HUMANENSP00000229794STRING
FAK2_HUMANENSP00000229794STRING
MK11_HUMANENSP00000229794STRING
DDIT3_HUMANENSP00000229794STRING
GATA3_HUMANENSP00000229794STRING
NCOR2_HUMANENSP00000229794STRING
MAPK3_HUMANENSP00000229794STRING
MAX_HUMANENSP00000229794STRING
MP2K6_HUMANENSP00000229794STRING
STAT1_HUMANENSP00000229794STRING
STAT1_HUMANENSP00000229794STRING
- top -

Disease Reference
Kegg disease
There are no disease associations of PTM sites.
Drug Reference
There are no disease associations of PTM sites.
- top -
Related Literatures of Post-Translational Modification
Acetylation
ReferencePubMed
"Acetylation of a conserved lysine residue in the ATP binding pocketof p38 augments its kinase activity during hypertrophy ofcardiomyocytes.";
Pillai V.B., Sundaresan N.R., Samant S.A., Wolfgeher D., Trivedi C.M.,Gupta M.P.;
Mol. Cell. Biol. 31:2349-2363(2011).
Cited for: ACETYLATION AT LYS-53 AND LYS-152 BY KAT2B/PCAF AND EP300, ANDDEACETYLATION BY HDAC3.
Phosphorylation
ReferencePubMed
"Pro-inflammatory cytokines and environmental stress cause p38mitogen-activated protein kinase activation by dual phosphorylation ontyrosine and threonine.";
Raingeaud J., Gupta S., Rogers J.S., Dickens M., Han J.,Ulevitch R.J., Davis R.J.;
J. Biol. Chem. 270:7420-7426(1995).
Cited for: PHOSPHORYLATION AT THR-180 AND TYR-182, ENZYME REGULATION, ANDSUBCELLULAR LOCATION.
"Global phosphoproteome of HT-29 human colon adenocarcinoma cells.";
Kim J.-E., Tannenbaum S.R., White F.M.;
J. Proteome Res. 4:1339-1346(2005).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY.
"Immunoaffinity profiling of tyrosine phosphorylation in cancercells.";
Rush J., Moritz A., Lee K.A., Guo A., Goss V.L., Spek E.J., Zhang H.,Zha X.-M., Polakiewicz R.D., Comb M.J.;
Nat. Biotechnol. 23:94-101(2005).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY.
"Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases.";
Salvador J.M., Mittelstadt P.R., Guszczynski T., Copeland T.D.,Yamaguchi H., Appella E., Fornace A.J. Jr., Ashwell J.D.;
Nat. Immunol. 6:390-395(2005).
Cited for: PHOSPHORYLATION AT TYR-323, AND ENZYME REGULATION.
"Global, in vivo, and site-specific phosphorylation dynamics insignaling networks.";
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P.,Mann M.;
Cell 127:635-648(2006).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY.
"Global survey of phosphotyrosine signaling identifies oncogenickinases in lung cancer.";
Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., Nardone J.,Lee K., Reeves C., Li Y., Hu Y., Tan Z., Stokes M., Sullivan L.,Mitchell J., Wetzel R., Macneill J., Ren J.M., Yuan J.,Bakalarski C.E., Villen J., Kornhauser J.M., Smith B., Li D., Zhou X.,Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.;
Cell 131:1190-1203(2007).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY.
"Proteomics analysis of protein kinases by target class-selectiveprefractionation and tandem mass spectrometry.";
Wissing J., Jaensch L., Nimtz M., Dieterich G., Hornberger R.,Keri G., Wehland J., Daub H.;
Mol. Cell. Proteomics 6:537-547(2007).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY.
"Multiple reaction monitoring for robust quantitative proteomicanalysis of cellular signaling networks.";
Wolf-Yadlin A., Hautaniemi S., Lauffenburger D.A., White F.M.;
Proc. Natl. Acad. Sci. U.S.A. 104:5860-5865(2007).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY.
"ATM and ATR substrate analysis reveals extensive protein networksresponsive to DNA damage.";
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III,Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N.,Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.;
Science 316:1160-1166(2007).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-263, AND MASSSPECTROMETRY.
"Phosphoproteome of resting human platelets.";
Zahedi R.P., Lewandrowski U., Wiesner J., Wortelkamp S., Moebius J.,Schuetz C., Walter U., Gambaryan S., Sickmann A.;
J. Proteome Res. 7:526-534(2008).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY.
"Kinase-selective enrichment enables quantitative phosphoproteomics ofthe kinome across the cell cycle.";
Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R.,Greff Z., Keri G., Stemmann O., Mann M.;
Mol. Cell 31:438-448(2008).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2; THR-16; THR-180 ANDTYR-182, AND MASS SPECTROMETRY.
"A quantitative atlas of mitotic phosphorylation.";
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E.,Elledge S.J., Gygi S.P.;
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY.
"An extensive survey of tyrosine phosphorylation revealing new sitesin human mammary epithelial cells.";
Heibeck T.H., Ding S.-J., Opresko L.K., Zhao R., Schepmoes A.A.,Yang F., Tolmachev A.V., Monroe M.E., Camp D.G. II, Smith R.D.,Wiley H.S., Qian W.-J.;
J. Proteome Res. 8:3852-3861(2009).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT TYR-182, AND MASSSPECTROMETRY.
"Large-scale proteomics analysis of the human kinome.";
Oppermann F.S., Gnad F., Olsen J.V., Hornberger R., Greff Z., Keri G.,Mann M., Daub H.;
Mol. Cell. Proteomics 8:1751-1764(2009).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2; THR-180 AND TYR-182,AND MASS SPECTROMETRY.
"Quantitative phosphoproteomic analysis of T cell receptor signalingreveals system-wide modulation of protein-protein interactions.";
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K.,Rodionov V., Han D.K.;
Sci. Signal. 2:RA46-RA46(2009).
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-180 AND TYR-182, ANDMASS SPECTROMETRY.
- top -
Basic Information | Overview of PTM Sites | Experimental PTM Sites | Protein-Protein Interactions | Drug and Disease Associations | Related Literatures